ON R_{1} SPACE IN L-TOPOLOGICAL SPACES

Rafiqul Islam ${ }^{1, *}$ and M. S. Hossain ${ }^{2}$
${ }^{1}$ Department of mathematics, Pabna University of Science and Technology, Pabna-6600, Bangladesh.
${ }^{2}$ Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh.
*Corresponding author: rafiqul.pust.12@gmail.com

Received 27.12.2016 Accepted 30.07.2017

Abstract

In this paper, R1 space in L-topological spaces are defined and studied. We give seven definitions of R_{1} space in L-topological spaces and discuss certain relationship among them. We show that all of these satisfy 'good extension' property. Moreover, some of their other properties are obtained.

Keywords: L-fuzzy set, L-topology, Hereditary, projective and productive.

1. Introduction

The concept of R_{1}-property first defined by Yang [19] and there after Murdeshwar and Naimpally [15], Dorsett [6], Dude [7], Srivastava [17], Petricevic [16] and Candil [11]. Chaldas et al [4] and Ekici [8] defined and studied many characterizations of R_{1}-properties. Later, this concept was generalized to 'fuzzy R_{1}-propertise' by Ali and Azam [2, 3] and many other fuzzy topologists. In this paper we defined seven notions of R_{1} space in L-topological spaces and we also showed that this space possesses many nice properties which are hereditary productive and projective.

2. Preliminaries

In this section, we recall some basic definitions and known results in L-fuzzy sets and L-fuzzy topology.

Definition 2.1. [20] Let X be a non-empty set and $I=[0,1]$. A fuzzy set in X is a function $u: X \rightarrow I$ which assigns to each element $x \in X$, a degree of membership, $u(x) \in I$.

Definition 2.2. [9] Let X be a non-empty set and L be a complete distributive lattice with 0 and 1 . An L-fuzzy set in X is a function $\alpha: X \rightarrow L$ which assigns to each element $x \in X$, a degree of membership, $\alpha(x) \in L$.

Definition 2.3. [14] An L-fuzzy point p in X is a special L-fuzzy sets with membership function

$$
\begin{aligned}
& p(x)=r \text { if } x=x_{0} \\
& p(x)=0 \text { if } x \neq x_{0} \text { where } r \in L .
\end{aligned}
$$

Definition 2.4. [14] An L-fuzzy point p is said to belong to an L-fuzzy set α in $X(p \in \alpha)$ if and only if $p(x)<\alpha(x)$ and $p(y) \leq \alpha(y)$. That is $x_{r} \in \alpha$ implies $r<\alpha(x)$.

Definition 2.5. [10] Let X be a non-empty set and L be a complete distributive lattice with 0 and 1 . Suppose that τ be the sub collection of all mappings from X to L i.e. $\tau \subseteq L^{X}$.Then τ is called Ltopology on X if it satisfies the following conditions:
(i) $0^{*}, 1^{*} \in \tau$
(ii) If $u_{1}, u_{2} \in \tau$ then $u_{1} \cap u_{2} \in \tau$
(iii) If $u_{i} \in \tau$ for each $i \in \Delta$ then $\cup_{i \in \Delta} u_{i} \in \tau$.

Then the pair (X, τ) is called an L-topological space (lts, for short) and the members of τ are called open L-fuzzy sets. An L-fuzzy sets v is called a closed L-fuzzy set if $1-v \in \tau$.

Definition 2.6. [20] An L-fuzzy singleton in X is an L-fuzzy set in X which is zero everywhere except at one point say x, where it takes a value say r with $0<r \leq 1$ and $r \in L$. The authors denote it by x_{r} and $x_{r} \in \alpha$ iff $r \leq \alpha(x)$.

Definition 2.7. [14] An L-fuzzy singleton x_{r} is said to be quasi-coincident (q-coincident, in short) with an L-fuzzy set α in X, denoted by $x_{r} q \alpha$ iff $r+\alpha(x)>1$. Similarly, an L-fuzzy set α in X is said to be q-coincident with an L-fuzzy set β in X, denoted by $\alpha q \beta$ if and only if $\alpha(x)+\beta(x)>1$ for some $x \in X$. Therefore $\alpha \bar{q} \beta$ iff $\alpha(x)+\beta(x) \leq 1$ for all $x \in X$, where $\alpha \bar{q} \beta$ denote an Lfuzzy set α in X is said to be not q -coincident with an L -fuzzy set β in X.

Definition 2.8. [3] Let $f: X \rightarrow Y$ be a function and u be an L-fuzzy set in X. Then the image $f(u)$ is an L-fuzzy set in Y whose membership function is defined by
$(f(u))(y)=\{\sup (u(x)) \mid f(x)=y\}$ if $f^{-1}(y) \neq \emptyset, x \in X$
$(f(u))(y)=0$ if $f^{-1}(y)=\emptyset, x \in X$.
Definition 2.9. [2] Let f be a real-valued function on an L-topological space. If $\{x: f(x)>\alpha\}$ is open for every real α, then f is called lower-semi continuous function (lsc, in short).

Definition 2.10. [14] Let (X, τ) and (Y, s) be two L-topological space and f be a mapping from (X, τ) into (Y, s) i.e. $f:(X, \tau) \rightarrow(Y, s)$. Then f is called
(i) Continuous iff for each open L-fuzzy set $u \in s \Rightarrow f^{-1}(u) \in \tau$.
(ii) Open iff $f(\mu) \in s$ for each open L-fuzzy set $\mu \in \tau$.
(iii) Closed iff $f(\lambda)$ is s-closed for each $\lambda \in \tau^{c}$ where τ^{c} is closed L-fuzzy set in X.
(iv) Homeomorphism iff f is bijective and both f and f^{-1} are continuous..

Definition 2.11. [14] Let X be a nonempty set and T be a topology on X. Let $\tau=\omega(T)$ be the set of all lower semi continuous (lsc) functions from (X, T) to L (with usual topology). Thus $\omega(T)=$ $\left\{u \in L^{X}: u^{-1}(\alpha, 1] \in T\right\}$ for each $\alpha \in L$. It can be shown that $\omega(T)$ is a L-topology on X. Let " P " be the property of a topological space (X, T) and LP be its L-topological analogue. Then LP is called a "good extension" of P "if the statement (X, T) has P iff $(X, \omega(T))$ has LP" holds good for every topological space (X, T).

Definition 2.12. [18] Let $\left(X_{i}, \tau_{i}\right)$ be a family of L-topological spaces. Then the space ($\left.\Pi X_{i}, \Pi \tau_{i}\right)$ is called the product L-topological space of the family of L-topological space $\left\{\left(X_{i}, \tau_{i}\right): i \in \Delta\right\}$ where $\Pi \tau_{i}$ denote the usual product of L-topologies of the families $\left\{\tau_{i}: i \in \Delta\right\}$ of L-topologies on X.

An L-topological property ' P ' is called productive if the product L-topological space of a family of L-topological space, each having property ' P ' also has property ' P '.

A property ' P ' in an L-topological space is called projective if for a family of L-topological space $\left\{\left(X_{i}, \tau_{i}\right): i \in \Delta\right\}$, the product L-topological space ($\Pi X_{i}, \Pi \tau_{i}$) has property ' P ' implies that each coordinate space has property ' P '.

Definition 2.13. [1] Let (X, τ) be an L-topological space and $A \subseteq X$. we define $\tau_{A}=\{u \mid A: u \in \tau\}$ the subspace L-topologies on A induced by τ. Then $\left(A, \tau_{A}\right)$ is called the subspace of (X, τ) with the underlying set A.

An L-topological property ' P ' is called hereditary if each subspace of an L-topological space with property ' P ' also has property ' P '.

3. \mathbf{R}_{1}-property in L-Topological Spaces

We now give the following definitions of R_{1}-property in L-topological spaces.
Definition 3.1. An lts (X, τ) is called
(a) $L-R_{1}(i)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then $\exists u, v \in \tau$ such that $u(x)=1, u(y)=0, v(x)=0, v(y)=1$ and $u \cap v=0$.
(b) $L-R_{1}$ (ii) if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then for any pair of distinct L-fuzzy points $x_{r}, y_{s} \in S(X)$ and $\exists u, v \in \tau$ such that $x_{r} \in u, y_{s} \notin u$ and $x_{r} \notin v, y_{s} \in$ $v, u \cap v=0$.
(c) $L-R_{1}(i i i)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then for all pairs of distinct L-fuzzy singletons $x_{r}, y_{s} \in S(X), x_{r} \bar{q} y_{s}$ and $\exists u, v \in \tau$ such that $x_{r} \subseteq u, y_{s} \bar{q} u$ and $y_{s} \subseteq v, x_{r} \bar{q} v$ and $u \cap v=0$.
(d) $L-R_{1}(i v)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then for any pair of distinct L-fuzzy points $x_{r}, y_{s} \in S(X)$ and $\exists u, v \in \tau$ such that $x_{r} \in u, u \bar{q} y_{s}$ and $y_{s} \in v, v \bar{q} x_{r}$ and $u \cap v=0$.
(e) $L-R_{1}(v)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ and for any pair of distinct L-fuzzy points $x_{r}, y_{s} \in S(X)$ and $\exists u, v \in \tau$ such that $x_{r} \in u \subseteq \operatorname{coy}_{s}, y_{s} \in v \subseteq \operatorname{cox}_{r}$ and $u \subseteq \operatorname{cov}$.
(f) $L-R_{1}(v i)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then $\exists u, v \in \tau$ such that $u(x)>0, u(y)=0$ and $v(x)=0, v(y)>0$.
(g) $L-R_{1}(v i i)$ if $\forall x, y \in X, x \neq y$ whenever $\exists w \in \tau$ with $w(x) \neq w(y)$ then $\exists u, v \in \tau$ such that $u(x)>u(y)$ and $v(y)>v(x)$.

Here, we established a complete comparison of the definitions

$$
L-R_{1}(i i), L-R_{1}(i i i), L-R_{1}(i v), L-R_{1}(v), L-R_{1}(v i) \text { and } L-R_{1}(v i i) \text { with } L-R_{1}(i) .
$$

Theorem 3.2. Let (X, τ) be an lts. Then we have the following implications:

The reverse implications are not true in general except $L-R_{1}(v i)$ and $L-R_{1}(v i i)$.
Proof: $L-R_{1}(i) \Rightarrow L-R_{1}(i i), L-R_{1}(i) \Rightarrow L-R_{1}(i i i)$ can be proved easily. Now $L-R_{1}(i) \Rightarrow$ $L-R_{1}(i v)$ and $L-R_{1}(i) \Rightarrow L-R_{1}(v)$, since $L-R_{1}(i i) \Leftrightarrow L-R_{1}(i v)$ and $L-R_{1}(i v) \Leftrightarrow L-$ $R_{1}(v)$. $L-R_{1}(i) \Rightarrow L-R_{1}(v i)$; It is obvious. $L-R_{1}(i) \Rightarrow L-R_{1}(v i i)$, since $L-R_{1}(v i) \Rightarrow L-$ R_{1} (vii).

The reverse implications are not true in general except $L-R_{1}(v i)$ and $L-R_{1}(v i i)$, it can be seen through the following counter examples:

Example-1: Let $X=\{x, y\}, \tau$ be the L-topology on X generated by $\{\alpha: \alpha \in L\} \cup\{u, v, w\}$ where $w(x)=0.6, w(y)=0.7, u(x)=0.5, u(y)=0, v(x)=0, v(y)=0.6$
$L=\{0,0.05,0.1,0.15, \ldots \ldots \ldots 0.95,1\}$ and $r=0.4, s=0.3$.
Example-2: Let $X=\{x, y\}, \tau$ be the L-topology on X generated by $\{\alpha: \alpha \in L\} \cup\{u, v, w\}$ where $w(x)=0.8, w(y)=0.9, u(x)=0.5, u(y)=0, v(x)=0, v(y)=0.4$
$L=\{0,0.05,0.1,0.15, \ldots \ldots \ldots 0.95,1\}$ and $r=0.5, s=0.4$.
Proof: $L-R_{1}(i i) \nRightarrow L-R_{1}(i)$: From example-1, we see that the lts (X, τ) is clearly $L-R_{1}(i i)$ but it is not $L-R_{1}(i)$. Since there is no L-fuzzy set in τ which grade of membership is 1 .
$L-R_{1}(i i i) \nRightarrow L-R_{1}(i)$: From example-2, we see the lts (X, τ) is clearly $L-R_{1}$ (iii) but it is not $L-R_{1}(i i)$. Since $L-R_{1}(i i i) \nRightarrow L-R_{1}(i i)$ and $L-R_{1}(i i) \nRightarrow L-R_{1}(i)$ so $L-R_{1}(i i i) \nRightarrow L-$ $R_{1}(i)$.
$L-R_{1}(i v) \nRightarrow L-R_{1}(i)$: This follows automatically from the fact that
$L-R_{1}(i i) \Leftrightarrow L-R_{1}(i v)$ and it has already been shown that $L-R_{1}(i i) \nRightarrow$
$L-R_{1}(i)$ so $L-R_{1}(i v) \nRightarrow L-R_{1}(i)$.
$L-R_{1}(v) \nRightarrow L-R_{1}(i)$: Since $L-R_{1}(i v) \Leftrightarrow L-R_{1}(v)$ and $L-R_{1}(i v) \nRightarrow L-R_{1}(i)$ so $L-$
$R_{1}(v) \nRightarrow L-R_{1}(i)$. But $L-R_{1}(v i i) \Rightarrow L-R_{1}(v i) \Rightarrow$
$L-R_{1}(i)$ is obvious.

4. Good extension, Hereditary, Productive and Projective Properties in L-Topology

We show that all definitions $L-R_{1}(i), L-R_{1}(i i), L-R_{1}(i i i)$,
$L-R_{1}(i v), L-R_{1}(v), L-R_{1}(v i)$ and $L-R_{1}(v i i)$ are 'good extensions' of R_{1} - property, as shown below:

Theorem 4.1. Let (X, T) be a topological space. Then (X, T) is R_{1} iff $(X, \omega(T))$ is $L-R_{1}(j)$, where $j=i, i i, i i i, i v, v, v i, v i i$.

Proof: Let (X, T) be R_{1}. Choose $x, y \in X, x \neq y$. Whenever $\exists W \in T$ with $x \in W, y \notin W$ or $x \notin$ $W, y \in W$ then $\exists U, V \in T$ such that $x \in U, y \notin U$ and $y \in V, x \notin V$ and $U \cap V=\emptyset$. Suppose $x \in W, y \notin W$ since $W \in T$ then $1_{w} \in \omega(T)$ with $1_{w}(x) \neq 1_{w}(y)$. Also consider the lower semi continuous function $1_{U}, 1_{V}$, then $1_{U}, 1_{V} \in \omega(T)$ such that $1_{U}(x)=1,1_{U}(y)=0$ and $1_{V}(x)=$ $0,1_{V}(y)=1$ and so that $1_{U} \cap 1_{V}=0$ as $U \cap V=\emptyset$. Thus $(X, \omega(T))$ is $L-R_{1}(i)$.

Conversely, let $(X, \omega(T))$ be $L-R_{1}(i)$. To show that (X, T) is R_{1}. Choose $x, y \in X$ with $x \neq y$. Whenever $\exists w \in T$ with $w(x) \neq w(y)$ then $\exists u, v \in \omega(T)$ such that $u(x)=1, u(y)=0, v(x)=$ $0, v(y)=1$ and $u \cap v=0$. Since $w(x) \neq w(y)$, then either $w(x)<w(y)$ or $w(x)>w(y)$. Choose $w(x)<w(y)$, then $\exists s \in L$ such that $w(x)<s<w(y)$. So it is clear that $w^{-1}(s, 1] \in T$ and $x \notin w^{-1}(s, 1], y \in w^{-1}(s, 1]$. Let $U=u^{-1}\{1\}$ and $V=v^{-1}\{1\}$, then $U, V \in T$ and is $x \in U, y \notin U, x \notin V, y \in V$, and $U \cap V=\emptyset$ as $u \cap v=0$. Hence (X, T) is R_{1}.

Similarly, we can show that $L-R_{1}(i i), L-R_{1}(i i i), L-R_{1}(i v)$,
$L-R_{1}(v), L-R_{1}(v i), L-R_{1}(v i i)$ are also hold 'good extension' property.
Theorem 4.2. Let (X, τ) be an lts, $A \subseteq X$ and $\tau_{A}=\{u \mid A: u \in \tau\}$, then
(a) $\quad(X, \tau)$ is $L-R_{1}(i) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(i)$.
(b) (X, τ) is $L-R_{1}(i i) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(i i)$.
(c) (X, τ) is $L-R_{1}(i i i) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}$ (iii).
(d) (X, τ) is $L-R_{1}(i v) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(i v)$.
(e) $\quad(X, \tau)$ is $L-R_{1}(v) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(v)$.
(f) $\quad(X, \tau)$ is $L-R_{1}(v i) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(v i)$.
(g) (X, τ) is $L-R_{1}(v i i) \Rightarrow\left(A, \tau_{A}\right)$ is $L-R_{1}(v i i)$.

Proof: We prove only (a). Suppose (X, τ) is L-topological space and is also $L-R_{1}(i)$.We shall prove that $\left(A, \tau_{A}\right)$ is $L-R_{1}(i)$. Let $x, y \in A$ with $x \neq y$ and $\exists w \in \tau_{A}$ such that $w(x) \neq w(y)$, then $x, y \in X$ with $x \neq y$ as $A \subseteq X$. Consider m be the extension function of w on X , then $m(x) \neq m(y)$, Since (X, τ) is $L-R_{1}(i), \exists u, v \in \tau$ such that $u(x)=1, u(y)=0, v(x)=$ $0, v(y)=1$ and $u \cap v=0$. For $A \subseteq X$, we find,$u|A, v| A \in \tau_{A}$ and $u|A(x)=1, u| A(y)=0$ and $v|A(x)=0, v| A(y)=1$ and $u|A \cap v| A=(u \cap v) \mid A=0$ as $x, y \in A$. Hence it is clear that the subspace $\left(A, \tau_{A}\right)$ is $L-R_{1}(i)$.

Similarly, (b), (c), (d), (e), (f), (g) can be proved.

So it is clear that $L-R_{1}(j), j=i, i i, \ldots, v i$ satisfy hereditary property.
Theorem 4.3. Given $\left\{\left(X_{i}, \tau_{i}\right): i \in \Lambda\right\}$ be a family of L-topological space. Then the product of Ltopological space ($\Pi X_{i}, \Pi \tau_{i}$) is $L-R_{1}(j)$ iff each coordinate space (X_{i}, τ_{i}) is $L-R_{1}(j)$, where $j=i, i i, i i i, i v, v, v i, v i i$.

Proof: Let each coordinate space $\left\{\left(X_{i}, \tau_{i}\right): i \in \Lambda\right\}$ be $L-R_{1}(i)$. Then we show that the product space is $L-R_{1}(i)$. Suppose $x, y \in X$ with $x \neq y$ and $w \in \Pi \tau_{i}$ with $w(x) \neq w(y)$, again suppose $x=\Pi x_{i}, y=\Pi y_{i}$ then $x_{j} \neq y_{j}$ for some $j \in \Lambda$.But we have $w(x)=\min \left\{w_{i}\left(x_{i}\right): i \in \Lambda\right\}$, and $w(y)=\min \left\{w_{i}\left(y_{i}\right): i \in \Lambda\right\}$. Hence we can find at least one $w_{j} \in \tau_{j}$ with $w_{j}\left(x_{j}\right) \neq w_{j}\left(y_{j}\right)$, since each $\left(X_{i}, \tau_{i}\right): i \in \Lambda$ be $L-R_{1}(i)$ then $\exists u_{j}, v_{j} \in \tau_{j}$ such that $u_{j}\left(x_{j}\right)=1, u_{j}\left(y_{j}\right)=0, v_{j}\left(x_{j}\right)=$ $0, v_{j}\left(y_{j}\right)=1$ and $u_{j} \cap v_{j}=0$. Now take $u=\Pi u^{\prime}, v=\Pi v^{\prime}{ }_{j}$ where $u_{j}^{\prime}=u_{j}, v_{j}^{\prime}=v_{j}$ and $u_{i}=$ $v_{i}=1$ for $i \neq j$. Then $u, v \in \Pi \tau_{i}$ such that $u(x)=1, u(y)=0, v(x)=0, v(y)=1$ and $u \cap v=$ 0 . Hence the product of

L-topological space is also L-topological space and ($\Pi X_{i}, \Pi \tau_{i}$) is $L-R_{1}(i)$.
Conversely, let the product L-topological space ($\Pi X_{i}, \Pi \tau_{i}$) is $L-R_{1}(i)$. Take any coordinate space $\left(X_{j}, \tau_{j}\right)$, choose $x_{j}, y_{j} \in X_{j}, x_{j} \neq y_{j}$ and $w_{i} \in \Pi \tau_{i}$ with $w_{i}\left(x_{i}\right) \neq w_{i}\left(y_{i}\right)$. Now construct $x, y \in X$ such that $x=\Pi x^{\prime}{ }_{i}, y=\Pi y_{i}^{\prime}$ where $x_{i}^{\prime}=y_{i}^{\prime}$ for $i \neq j$ and $x_{j}^{\prime}=x_{j}, y_{j}^{\prime}=y_{j}$. Then $x \neq y$ and using the product space $L-R_{1}(i)$, $\Pi w_{i} \in \Pi \tau_{i}$ with $\Pi w_{i}\left(x_{i}\right) \neq \Pi w_{i}\left(y_{i}\right)$, since ($\Pi X_{i}, \Pi \tau_{i}$) is $L-R_{1}(i)$ then $\exists u, v \in \Pi \tau_{i}$ such that $u(x)=1, u(y)=0, v(x)=0, v(y)=1$ and $u \cap v=0$. Now choose any L-fuzzy point x_{r} in u. Then \exists a basic open L-fuzzy set $\Pi u_{j}^{r} \in \Pi \tau_{j}$ such that $x_{r} \in \Pi u_{j}^{r} \subseteq u$ which implies that $r<\Pi u_{j}^{r}(x)$ or that $r<\inf _{j} u_{j}^{r}\left(x_{j}^{\prime}\right)$
and hence $r<\Pi u_{j}^{r}\left(x_{j}^{\prime}\right) \forall j \in \Lambda \ldots \ldots(i)$ and

$$
u(y)=0 \Rightarrow \Pi u_{j}(y)=0
$$

Similarly, corresponding to a fuzzy point $y_{s} \in v$ there exists a basic fuzzy open set $\Pi v_{j}^{s} \in \Pi \tau_{j}$ such that $y_{s} \in \Pi v_{j}^{s} \subseteq v$ which implies that

$$
s<v_{j}^{s}(j) \forall j \in \Lambda \ldots \ldots(i i i) \text { and }
$$

$\Pi v_{j}^{s}(y)=0 \ldots \ldots$ (iv). Further, $\Pi u_{j}^{r}(y)=0 \Rightarrow u_{i}^{r}\left(y_{i}\right)=0$, since for $j \neq i, x_{j}^{\prime}=y_{j}^{\prime}$ and hence from $(i), u_{j}^{r}\left(y_{j}\right)=u_{j}^{r}\left(x_{j}\right)>r$. Similarly, $\Pi v_{j}^{S}(x)=0 \Rightarrow v_{i}^{s}\left(x_{i}\right)=0$ using (iii).

Thus we have $u_{i}^{r}\left(x_{i}\right)>r, u_{i}^{r}\left(y_{i}\right)=0$ and $v_{i}^{s}\left(y_{i}\right)>s, v_{i}^{s}\left(x_{i}\right)=0$. Now consider $\sup _{r} u_{i}^{r}=$ $u_{i}, \sup _{s} v_{i}^{s}=v_{i}$, then $u_{i}\left(x_{i}\right)=1, u_{i}\left(y_{i}\right)=0, v_{i}\left(x_{i}\right)=0, v_{i}\left(y_{i}\right)=1$ and $u_{i} \cap v_{i}=0$, showing that $\left(X_{i}, \tau_{i}\right)$ is $L-R_{1}(i)$.

Moreover one can easily verify that
$\left(X_{i}, \tau_{i}\right), i \in \Lambda$ is $L-R_{1}(i i) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right)$ is $L-R_{1}(i i)$.
$\left(X_{i}, \tau_{i}\right), i \in \Lambda$ is $L-R_{1}(i i i) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right)$ is $L-R_{1}(i i i)$.
$\left(X_{i}, \tau_{i}\right), i \in \Lambda$ is $L-R_{1}(i v) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right)$ is $L-R_{1}(i v)$.

$$
\begin{aligned}
& \left(X_{i}, \tau_{i}\right), i \in \Lambda \text { is } L-R_{1}(v) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right) \text { is } L-R_{1}(v) . \\
& \left(X_{i}, \tau_{i}\right), i \in \Lambda \text { is } L-R_{1}(v i) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right) \text { is } L-R_{1}(v i) . \\
& \left(X_{i}, \tau_{i}\right), i \in \Lambda \text { is } L-R_{1}(v i i) \Leftrightarrow\left(\Pi X_{i}, \Pi \tau_{i}\right) \text { is } L-R_{1}(v i i) .
\end{aligned}
$$

Hence, we see that $L-R_{1}(i), L-R_{1}(i i), L-R_{1}(i i i), L-R_{1}(i v)$,
$L-R_{1}(v), L-R_{1}(v i), L-R_{1}(v i i)$ Properties are productive and projective.

5. Mapping in L-topological spaces

We show that $L-R_{1}(j)$ property is preserved under one-one, onto and continuous mapping for $j=i, i i, i i i, i v, v, v i, v i i$.

Theorem 5.1 Let (X, τ) and (Y, s) be two L-topological space and $f:(X, \tau) \rightarrow(Y, s)$ be one-one, onto L-continuous and L-open map, then
(a) $\quad(X, \tau)$ is $L-R_{1}(i) \Rightarrow(Y, s)$ is $L-R_{1}(i)$.
(b) $\quad(X, \tau)$ is $L-R_{1}(i i) \Rightarrow(Y, s)$ is $L-R_{1}(i i)$.
(c) $\quad(X, \tau)$ is $L-R_{1}(i i i) \Rightarrow(Y, s)$ is $L-R_{1}(i i i)$.
(d) (X, τ) is $L-R_{1}(i v) \Rightarrow(Y, s)$ is $L-R_{1}(i v)$.
(e) $\quad(X, \tau)$ is $L-R_{1}(v) \Rightarrow(Y, s)$ is $L-R_{1}(v)$.
(f) $\quad(X, \tau)$ is $L-R_{1}(v i) \Rightarrow(Y, s)$ is $L-R_{1}(v i)$.
(g) (X, τ) is $L-R_{1}(v i i) \Rightarrow(Y, s)$ is $L-R_{1}(v i i)$.

Proof: Suppose (X, τ) is $L-R_{1}(i)$.We shall prove that (Y, s) is $L-R_{1}(i)$. Let $y_{1}, y_{2} \in Y$ with $y_{1} \neq y_{2}$ and $w \in s$ with $w\left(y_{1}\right) \neq w\left(y_{2}\right)$. Since f is onto then $\exists x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=$ y_{1} and $f\left(x_{2}\right)=y_{2}$, also $x_{1} \neq x_{1}$, as f is one-one. Now we have $f^{-1}(w) \in \tau$, Since f is Lcontinuous, also we have $f^{-1}(w)\left(x_{1}\right)=w f\left(x_{1}\right)=w\left(y_{1}\right)$ and $f^{-1}(w)\left(x_{2}\right)=w f\left(x_{2}\right)=$ $w\left(y_{2}\right)$.Therefore $f^{-1}(w)\left(x_{1}\right) \neq f^{-1}(w)\left(x_{2}\right)$. Again since (X, τ) is $L-R_{1}(i)$ and $\exists f^{-1}(w) \in \tau$ with $f^{-1}(w)\left(x_{1}\right) \neq f^{-1}(w)\left(x_{2}\right)$ then $\exists u, v \in \tau$
such that $u\left(x_{1}\right)=1, u\left(x_{2}\right)=0, v\left(x_{1}\right)=0, v\left(x_{2}\right)=1$ and $u \cap v=0$.
Now

$$
\begin{aligned}
& f(u)\left(y_{1}\right)=\left\{\sup u\left(x_{1}\right): f\left(x_{1}\right)=y_{1}\right\}=1 \\
& f(u)\left(y_{2}\right)=\left\{\operatorname{supu}\left(x_{2}\right): f\left(x_{2}\right)=y_{2}\right\}=0 \\
& f(v)\left(y_{1}\right)=\left\{\operatorname{supv}\left(x_{1}\right): f\left(x_{1}\right)=y_{1}\right\}=0 \\
& f(v)\left(y_{2}\right)=\left\{\sup v\left(x_{2}\right): f\left(x_{2}\right)=y_{2}\right\}=1
\end{aligned}
$$

And

$$
\begin{aligned}
& f(u \cap v)\left(y_{1}\right)=\left\{\sup (u \cap v)\left(x_{1}\right): f\left(x_{1}\right)=y_{1}\right. \\
& f(u \cap v)\left(y_{2}\right)=\left\{\sup (u \cap v)\left(x_{2}\right): f\left(x_{2}\right)=y_{2}\right.
\end{aligned}
$$

Hence $f(u \cap v)=0 \Rightarrow f(u) \cap f(v)=0$
Since f is L-open, $f(u), f(v) \in s$. Now it is clear that $\exists f(u), f(v) \in s$ such that $(u)\left(y_{1}\right)=1$, $f(u)\left(y_{2}\right)=0, f(v)\left(y_{1}\right)=0, f(v)\left(y_{2}\right)=1$ and $f(u) \cap f(v)=0$. Hence it is clear that the L-topological space (Y, s) is $L-R_{1}(i)$.

Similarly (b), (c), (d), (e), (f), (g) can be proved.
Theorem 5.2 Let (X, τ) and (Y, s) be two L-topological spaces and $f:(X, \tau) \rightarrow(Y, s)$ be Lcontinuous and one-one map, then
(a) (Y, s) is $L-R_{1}(i) \Rightarrow(X, \tau)$ is $L-R_{1}(i)$.
(b) (Y, s) is $L-R_{1}(i i) \Rightarrow(X, \tau)$ is $L-R_{1}(i i)$.
(c) $\quad(Y, s)$ is $L-R_{1}(i i i) \Rightarrow(X, \tau)$ is $L-R_{1}(i i i)$.
(d) (Y, s) is $L-R_{1}(i v) \Rightarrow(X, \tau)$ is $L-R_{1}(i v)$.
(e) $\quad(Y, s)$ is $L-R_{1}(v) \Rightarrow(X, \tau)$ is $L-R_{1}(v)$.
(f) $\quad(Y, s)$ is $L-R_{1}(v i) \Rightarrow(X, \tau)$ is $L-R_{1}(v i)$.
(g) (Y, s) is $L-R_{1}(v i i) \Rightarrow(X, \tau)$ is $L-R_{1}$ (vii).

Proof: Suppose (Y, s) is $L-R_{1}(i)$.We shall prove that (X, τ) is $L-R_{1}(i)$. Let $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ and $w \in \tau$ with $w\left(x_{1}\right) \neq w\left(x_{2}\right), \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$ as f is one-one, also $f(w) \in s$ as f is Lopen. We have $f(w)\left(f\left(x_{1}\right)\right)=\sup \left\{w\left(x_{1}\right)\right\}$ and $f(w)\left(f\left(x_{2}\right)\right)=\sup \left\{w\left(x_{2}\right)\right\}$ and $f(w)\left(f\left(x_{1}\right)\right) \neq$ $f(w)\left(f\left(x_{2}\right)\right)$. Since (Y, s) is $L-R_{1}(i), \exists u, v \in s \quad$ such that $u\left(f\left(x_{1}\right)\right)=1, u\left(f\left(x_{2}\right)\right)=$ $0, v\left(f\left(x_{1}\right)\right)=0, v\left(f\left(x_{2}\right)\right)=1$ and $u \cap v=0$. This implies that $f^{-1}(u)\left(x_{1}\right)=1, f^{-1}(u)\left(x_{2}\right)=$ $0, f^{-1}(v)\left(x_{1}\right)=0, f^{-1}(v)\left(x_{2}\right)=1$ and $f^{-1}(u \cap v)=0 \Rightarrow f^{-1}(u) \cap f^{-1}(v)=0$.

Now it is clear that $\exists f^{-1}(u), f^{-1}(v) \in \tau$ such that $f^{-1}(u)\left(x_{1}\right)=1, f^{-1}(u)\left(x_{2}\right)=0$, $f^{-1}(v)\left(x_{1}\right)=0, f^{-1}(v)\left(x_{2}\right)=1$ and $f^{-1}(u) \cap f^{-1}(v)=0$. Hence the L-topological space (X, τ) is $L-R_{1}(i)$.

Similarly (b), (c), (d), (e), (f), (g) can be proved.

REFERENCES

[1] Abu Safiya, A. S., Fora , A. A. and Warner, M. W., Fuzzy separation axioms and fuzzy continuity in fuzzy bitopological spaces. Fuzzy sets and systems, 62 (1994), 367-373.
[2] Ali, D. M. and Azam, F. A., On Some R_{1}-Properties in Fuzzy Topological Spaces. Journal of Scientific Research, 4 (1) (2012), 21-32.
[3] Ali, D. M. and Azam, F. A., Some Remarks on Fuzzy R ${ }_{0}$, R ${ }_{1}$ and Regular Topological Spaces. Journal of Scientific Research, 4 (2) (2012), 327-336.
[4] Caldas, M., Jafari, S. and Noiri, T., Characterization of pre R_{0} and R_{1} topological spaces. Topology proceeding, 25(2000), 17-30.
[5] Chang, C.L., Fuzzy topological spaces. J. Math. Anal Appl., 24(1968), 182-192.
[6] Dorsett, C., R_{0} and R_{1} topological spaces. Math. Vesnik, 2(15) (30)(1978), 112-117.
[7] Dude, K.K., A note on R_{1}-topological spaces. Period. Math. Hungar, 13(4) (1982), 267-271.
[8] Ekici, E., On R spaces. int. j. pure. Appl. Math., 25(2) (2005), 163-172.
[9] Goguen, J.A., L-fuzzy sets. J. Math. Anal. Appl., 18(1967), 145-174.
[10] Jin-xuan, F. and Ren Bai-lin, A set of new separation axioms in L-fuzzy topological spaces. Fuzzy sets and Systems, 96 (1998), 359-366.
[11] Kandil, A. and Sedahmed, E.H., A fuzzy R ${ }_{1}$ separation axioms. Information Sciences, 79(1994), 293313.
[12] Keskin, A. and Nori, T., On $\gamma-R_{0}$ and $\gamma-R_{1}$ spaces. Miskole Mathematics Notes, 10(2) (2009), 137-143.
[13] Li, S.G., Remarks on product of L-fuzzy topological spaces. Fuzzy Sets and Systems, 94(1998), 121124.
[14] Liu Ying-Ming and Luo Mao-Kang, Fuzzy Topology. Copyright © by World Scientific Publishing Co., Pte. Ltd. 1997.
[15] Murdeshwar, A.G. and Naimpally, S.A., R1-topological spaces. Canad. Math. Bull., 9(1965), 521-423.
[16] Petricevic, Z., R_{0} and R_{1} axioms in fuzzy topology. Mat. Vesnik, 41(1989), 21-28.
[17] Srivastava, A.K., R ${ }_{1}$-fuzzy topological spaces. J. Math. Anal Appl., 127(1987), 151-154.
[18] Srivastava, M. and Srivastava, R., On fuzzy pairwise $-T_{0}$ and fuzzy pairwise $-T_{1}$ Bitopological spaces. Indian J. Pure appl. Math., 32(3)(2001), 387-396.
[19] Yang, C. T., On Para compact spaces. Proc. Amer. Math. Soc., 5(1954), 185-189.
[20] Zadeh, L.A., Fuzzy sets. Information and Control, 8 (1965), 338-353.

